Catalytic activity of halohydrin dehalogenases towards spiroepoxides.

نویسندگان

  • Maja Majerić Elenkov
  • Ines Primožič
  • Tomica Hrenar
  • Ana Smolko
  • Irena Dokli
  • Branka Salopek-Sondi
  • Lixia Tang
چکیده

A novel activity of halohydrin dehalogenases towards spiroepoxides has been found. The enzyme from Arthrobacter sp. (HheA) catalysed highly regioselective azidolysis of spiroepoxides containing 5, 6 and 7-membered cycloalkane rings, while the enzyme from Agrobacterium radiobacter (HheC), besides high regioselectivity, also displayed moderate to high enantioselectivity (E up to >200) that can be applied for the kinetic resolution of chiral spiroepoxides. The orientations of spiroepoxides in the active site of halohydrin dehalogenases were studied by quantum-chemical calculations and docking simulations. Analyses of the complexes obtained revealed the origins of diastereoselectivity and enantioselectivity of the investigated biotransformations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Halohydrin dehalogenases are structurally and mechanistically related to short-chain dehydrogenases/reductases.

Halohydrin dehalogenases, also known as haloalcohol dehalogenases or halohydrin hydrogen-halide lyases, catalyze the nucleophilic displacement of a halogen by a vicinal hydroxyl function in halohydrins to yield epoxides. Three novel bacterial genes encoding halohydrin dehalogenases were cloned and expressed in Escherichia coli, and the enzymes were shown to display remarkable differences in sub...

متن کامل

Enantioselective formation and ring-opening of epoxides catalysed by halohydrin dehalogenases.

Halohydrin dehalogenases catalyse the conversion of vicinal halohydrins into their corresponding epoxides, while releasing halide ions. They can be found in several bacteria that use halogenated alcohols or compounds that are degraded via halohydrins as a carbon source for growth. Biochemical and structural studies have shown that halohydrin dehalogenases are evolutionarily and mechanistically ...

متن کامل

Substrate distortion by a lichenase highlights the different conformational itineraries harnessed by related glycoside hydrolases.

From the beginning of the past century, halogenated hydrocarbons have been extensively applied in industry and agriculture. Decades after the start of their widespread use, evidence started to accumulate that some of these xenobiotic halogenated compounds are persistent and highly toxic, stimulating investigations how they could be degraded. It appeared that specific bacterial enzymes exist, de...

متن کامل

Enhancing the biocatalytic manufacture of the key intermediate of atorvastatin by focused directed evolution of halohydrin dehalogenase

Halohydrin dehalogenases (HHDHs) are biocatalytically interesting enzymes due to their ability to form C-C, C-N, C-O, and C-S bonds. One of most important application of HHDH was the protein engineering of HheC (halohydrin dehalogenase from Agrobacterium radiobacter AD1) for the industrial manufacturing of ethyl (R)-4-cyano-3-hydroxybutanoate (HN), a key chiral synthon of a cholesterol-lowering...

متن کامل

Analysis of the reaction mechanism and substrate specificity of haloalkane dehalogenases by sequential and structural comparisons.

Haloalkane dehalogenases catalyse environmentally important dehalogenation reactions. These microbial enzymes represent objects of interest for protein engineering studies, attempting to improve their catalytic efficiency or broaden their substrate specificity towards environmental pollutants. This paper presents the results of a comparative study of haloalkane dehalogenases originating from di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Organic & biomolecular chemistry

دوره 10 26  شماره 

صفحات  -

تاریخ انتشار 2012